Molecular Mechanisms of Pesticide Toxicity
نویسندگان
چکیده
The environment represents a key contributor to human health and disease. Exposure to many environmental stressors such as pesticides have detrimental effects on health and are considered to contribute substantially to most diseases of major public health significance. Pesticide toxicity has been clearly demonstrated to alter a variety of physiological functions. In addition, evidence suggests that pesticide exposure increases the risk of cancer and neurodegenerative diseases. Recent evidence also demonstrates the ability of pesticides to act as endocrine disruptors, contributing to various adverse effects associated with reproductive and developmental toxicity (Colborn, 2006; Eskenazi et al., 1999). Thus, it is now evident that research towards understanding how pesticides influence the development and progression of disease will lead to further improvements in public health. A key for Environmental Sciences is identifying and understanding the basic biological processes that are altered or regulated by environmental factors, and that stimulate disease processes to begin, or the course of the disease to be substantially altered. For this, basic biology research with potential for future translation into the clinic must be pursued to understand the fundamental changes caused by exposure to environmental agents especially pesticides that will drive the scientific basis for health decisions. Cells respond and adapt to environmental signals such as toxicants or stressors through multiple mechanisms that involve communication pathways or signal transduction processes. A number of receptors sense the presence of foreign compounds in the cell and induce a cascade of events that is intended to lead to neutralization and excretion of these compounds. However, in many cases the metabolism of xenobiotic substances can give rise to toxic metabolites or to reactive oxygen species (ROS) that can harm the cell further. Additionally, the metabolism of foreign compounds can disturb other essential processes in the body, such as production and metabolism of certain hormones. Alterations in biochemical systems are often more sensitive indicators than those at higher levels of biological organization. Indeed, changes at the molecular level will underlie the effects at higher levels of organization. In this chapter, we focus on a number of molecular pathways implicated in responses to pesticides. In many cases, these responses are adaptive. However, the same systems are involved in reactions leading to toxic effects. They are crucial to the health effects associated with pesticide insult and can be linked to adverse toxic effects and pathologies at higher levels of organization. These systems are: Endocrine disruption that can take place at different physiological levels: A) Altering (inhibiting or stimulating) the secretion of hormones. This possible effect is related to
منابع مشابه
Changes in the Radiation Toxicity of Human Lymphoblastic T-cell Line (Jurkat) by a Common Pesticide: Diazinon
Background: Diazinon is one of the most common pesticides in the world playing a similar role to radiation and it could cause DNA breaks and genetic effects.Objective: In this study, radiosensitivity of a lymphoblastic cell line pretreated by Diazinon was investigated. Material and Methods: In this case-control study, the human lymphoblastic T-cell line was divided into 6 groups bas...
متن کاملThe effect of fasting on the important molecular mechanisms related to cancer treatment
Fasting does have remarkable benefits in the treatment of cancer and another diseases such as metabolic syndrome, diabetes, and a multitude of other chronic diseases. It has been determined that fasting could play an important role during cancer treatment and progression via the regulation of insulin-like growth factor-1 (IGF-1) as well as other growth factors. Also, it has been shown that fast...
متن کاملMetabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring
The ability of targeted and nontargeted metabolomics to discover chronic ecotoxicological effects is largely unexplored. Fenitrothion, an organophosphate pesticide, is categorized as a "red list" pollutant, being particularly hazardous to aquatic life. It acts primarily as a cholinesterase inhibitor, but evidence suggests it can also act as an androgen receptor antagonist. Whole-organism fenitr...
متن کاملRelative toxicity and occurrence patterns of pesticide mixtures in streams draining agricultural watersheds dominated by corn and soybean production.
To evaluate the relative toxicity and the occurrence patterns of pesticide mixtures in streams draining agricultural watersheds, a 3-step approach was used. First, a landscape of interest was identified, defined, and isolated. Second, the relative toxicity of mixtures, on the basis of pesticide toxicity index scores, was compared with the relative toxicity of the highest individual pesticide, o...
متن کاملPesticide Toxicity Index--a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms.
Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. ...
متن کاملInteractions between Pesticides and Microorganisms in Freshwater Sediments Toxic Effects and Implications for Bioavailability
Widenfalk, A. 2005. Interactions between pesticides and microorganisms in freshwater sediments – Toxic effects and implications for bioavailability. Doctoral dissertation. ISSN 1652-6880, ISBN 91-576-7022-6. In aquatic ecosystems sediment microbial communities provide many important functions, such as organic matter decomposition and by constituting a major food source for organisms at higher t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012